13,899 research outputs found

    Optical amplification enhancement in photonic crystals

    Get PDF
    Improving and controlling the efficiency of a gain medium is one of the most challenging problems of laser research. By measuring the gain length in an opal based photonic crystal doped with laser dye, we demonstrate that optical amplification is more than twenty-fold enhanced along the Gamma-K symmetry directions of the face centered cubic photonic crystal. These results are theoretically explained by directional variations of the density of states, providing a quantitative connection between density of the states and light amplification

    Non-Linear Affine Embedding of the Dirac Field from the Multiplicity-Free SL(4,R) Unirreps

    Get PDF
    The correspondence between the linear multiplicity-free unirreps of SL(4, R) studied by Ne'eman and {\~{S}}ija{\~{c}}ki and the non-linear realizations of the affine group is worked out. The results obtained clarify the inclusion of spinorial fields in a non-linear affine gauge theory of gravitation.Comment: 13 pages, plain TeX, macros include

    Specific heat and magnetic measurements in Nd0.5Sr0.5MnO3, Nd0.5Ca0.5MnO3 and Ho0.5Ca0.5MnO3 samples

    Full text link
    We studied the magnetization as a function of temperature and magnetic field in the compounds Nd0.5Sr0.5MnO3, Nd0.5Ca0.5MnO3 and Ho0.5Ca0.5MnO3. It allowed us to identify the ferromagnetic, antiferromagnetic and charge ordering phases in each case. The intrinsic magnetic moments of Nd3+ and Ho3+ ions experienced a short range order at low temperatures. We also did specific heat measurements with applied magnetic fields between 0 and 9 T and temperatures between 2 and 300 K in all three samples. Close to the charge ordering and ferromagnetic transition temperatures the specific heat curves showed peaks superposed to the characteristic response of the lattice oscillations. Below 10 K the specific heat measurements evidenced a Schottky-like anomaly for all samples. However, we could not successfully fit the curves to either a two level nor a distribution of two-level Schottky anomaly. Our results indicated that the peak temperature of the Schottky anomaly was higher in the compounds with narrower conduction band.Comment: submitted to PR

    Segon rahonament que tingueren Don Pascasio y Patatorta [Texto impreso] : abentse tornat à encontrar una vesprada en la alameda, y no podentse negar Patatorta al argument, comensà Don Pascasio de este modo

    Get PDF
    Hay un ejemplar encuadernado con: Romans, y coloqui nou, pera divertir el humor y desterrar la melancolia, yà que no tenim dinès ... (NP849.91/3085

    Smooth Approximation of Lipschitz functions on Riemannian manifolds

    Get PDF
    We show that for every Lipschitz function ff defined on a separable Riemannian manifold MM (possibly of infinite dimension), for every continuous ϵ:M(0,+)\epsilon:M\to (0,+\infty), and for every positive number r>0r>0, there exists a CC^\infty smooth Lipschitz function g:MRg:M\to\mathbb{R} such that f(p)g(p)ϵ(p)|f(p)-g(p)|\leq\epsilon(p) for every pMp\in M and Lip(g)Lip(f)+r\textrm{Lip}(g)\leq\textrm{Lip}(f)+r. Consequently, every separable Riemannian manifold is uniformly bumpable. We also present some applications of this result, such as a general version for separable Riemannian manifolds of Deville-Godefroy-Zizler's smooth variational principle.Comment: 10 page

    Morphological Study of Granular-Granular Impact Craters through Time-of-Flight Cameras: from Concept to Automation in Python

    Full text link
    Laboratory made granular-granular impact craters have been used as model analogues of planetary impact craters. These kind of craters have been observed and studied using profilometry techniques that allow to retrieve important morphologic features from the impacted surface. In this work, we propose to use a Time-of-Flight camera (Microsoft Kinect One) for the acquisition of depth data. We show comparisons between the typically used technique and the analysis derived from the Time-of-Flight data. We also release craterslab, a Python library developed to automate most of the tasks from the process of studying impact craters produced by granular projectiles hitting on the surface of granular targets. The library is able to acquire, identify, and measure morphological features of impacted surfaces through the reconstruction of 3D topographic maps. Our results show that using a Time-of-Flight camera and automating the data processing with a software library for the systematic study of impact craters can produce very accurate results while reducing the time spent on different stages of the process

    Spontaneous Symmetry Breakdown in non-relativistic Quantum Mechanics

    Full text link
    The advantages and disadvantages of some pedagogical non-relativistic quantum-mechanical models, used to illustrate spontaneous symmetry breakdown, are discussed. A simple quantum-mechanical toy model (a spinor on the line, subject to a magnetostatic interaction) is presented, that exhibits the spontaneous breakdown of an internal symmetry.Comment: 19 pages, 5 figures. arXiv admin note: substantial text overlap with arXiv:1111.1213. Equations (30) and (31) have been corrected. Other minor correction
    corecore